一个新的、具有挑战性的 AGI 测试让大多数 AI 模型难以应对
更新于:2025-03-26 12:51:27

知名 AI 研究员 Francois Chollet 共同创立的非营利组织 Arc Prize Foundation 在周一的一篇博文中宣布,他们创建了一个新的、具有挑战性的测试,用于衡量领先 AI 模型的通用智能水平。

到目前为止,这个名为 ARC-AGI-2 的新测试让大多数模型都难以应对。

根据 Arc Prize 排行榜显示,像 OpenAI 的 o1-pro 和 DeepSeek 的 R1 这样的"推理型" AI 模型在 ARC-AGI-2 上的得分在 1% 到 1.3% 之间。包括 GPT-4.5、Claude 3.7 Sonnet 和 Gemini 2.0 Flash 在内的强大非推理模型的得分约为 1%。

ARC-AGI 测试由类似谜题的问题组成,AI 需要从不同颜色方块的集合中识别视觉模式,并生成正确的"答案"网格。这些问题的设计目的是迫使 AI 适应它之前从未见过的新问题。

Arc Prize Foundation 让超过 400 人参加了 ARC-AGI-2 测试,以建立人类基准。平均而言,这些人组成的"小组"在测试题目中的正确率达到 60% —— 远远超过任何模型的得分。

在 X 平台上的一篇帖子中,Chollet 声称 ARC-AGI-2 比第一代测试 ARC-AGI-1 能更好地衡量 AI 模型的实际智能水平。Arc Prize Foundation 的测试旨在评估 AI 系统是否能在其训练数据之外高效地获取新技能。

Chollet 表示,与 ARC-AGI-1 不同,新测试防止 AI 模型依赖"暴力计算" —— 即大量计算力 —— 来寻找解决方案。Chollet 此前承认这是 ARC-AGI-1 的一个主要缺陷。

为了解决第一个测试的缺陷,ARC-AGI-2 引入了一个新的衡量标准:效率。它还要求模型即时解释模式,而不是依赖记忆。

Arc Prize Foundation 联合创始人 Greg Kamradt 在一篇博文中写道:"智能不仅仅由解决问题或获得高分的能力来定义。获取和部署这些能力的效率是一个关键的、决定性的组成部分。核心问题不仅仅是'AI 能否获得解决任务的技能?',还包括'以什么效率或成本?'"

ARC-AGI-1 在大约五年内都未被超越,直到 2024 年 12 月,OpenAI 发布了其先进的推理模型 o3,该模型超越了所有其他 AI 模型,并在评估中达到了与人类相当的表现。然而,正如我们当时指出的,o3 在 ARC-AGI-1 上的性能提升伴随着高昂的成本。

OpenAI 的 o3 模型版本 —— o3 (low) —— 首次在 ARC-AGI-1 上达到新高度,在测试中得分 75.7%,但在 ARC-AGI-2 上每个任务使用 200 美元的计算力只获得了 4% 的可怜得分。

随着科技行业许多人呼吁需要新的、未饱和的基准来衡量 AI 进展,ARC-AGI-2 应运而生。Hugging Face 的联合创始人 Thomas Wolf 最近告诉 TechCrunch,AI 行业缺乏足够的测试来衡量所谓人工通用智能的关键特征,包括创造力。

与新基准一同发布的还有 Arc Prize 2025 竞赛,挑战开发者在每个任务仅花费 0.42 美元的情况下,在 ARC-AGI-2 测试中达到 85% 的准确率。